Production of Two-Dimensional Nanomaterials via Liquid-Based Direct Exfoliation.
نویسندگان
چکیده
Tremendous efforts have been devoted to the synthesis and application of two-dimensional (2D) nanomaterials due to their extraordinary and unique properties in electronics, photonics, catalysis, etc., upon exfoliation from their bulk counterparts. One of the greatest challenges that scientists are confronted with is how to produce large quantities of 2D nanomaterials of high quality in a commercially viable way. This review summarizes the state-of-the-art of the production of 2D nanomaterials using liquid-based direct exfoliation (LBE), a very promising and highly scalable wet approach for synthesizing high quality 2D nanomaterials in mild conditions. LBE is a collection of methods that directly exfoliates bulk layered materials into thin flakes of 2D nanomaterials in liquid media without any, or with a minimum degree of, chemical reactions, so as to maintain the high crystallinity of 2D nanomaterials. Different synthetic methods are categorized in the following, in which material characteristics including dispersion concentration, flake thickness, flake size and some applications are discussed in detail. At the end, we provide an overview of the advantages and disadvantages of such synthetic methods of LBE and propose future perspectives.
منابع مشابه
The new skinny in two-dimensional nanomaterials.
While the advent of graphene has focused attention on the extraordinary properties of two-dimensional (2D) materials, graphene's lack of an intrinsic band gap and limited amenability to chemical modification has sparked increasing interest in its close relatives and in other 2D layered nanomaterials. In this issue of ACS Nano, Bianco et al. report on the production and characterization of one o...
متن کاملEdge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets.
Two-dimensional nanomaterials such as MoS2 are of great interest both because of their novel physical properties and their applications potential. Liquid exfoliation, an important production method, is limited by our inability to quickly and easily measure nanosheet size, thickness or concentration. Here we demonstrate a method to simultaneously determine mean values of these properties from an...
متن کاملGas Protection of Two-Dimensional Nanomaterials from High-Energy Impacts
Two-dimensional (2D) materials can be produced using ball milling with the help of liquid surfactants or solid exfoliation agents, as ball milling of bulk precursor materials usually produces nanosized particles because of high-energy impacts. Post-milling treatment is thus needed to purify the nanosheets. We show here that nanosheets of graphene, BN, and MoS2 can be produced by ball milling of...
متن کاملRecent Advances in Two-Dimensional Materials with Charge Density Waves: Synthesis, Characterization and Applications
Recently, two-dimensional (2D) charge density wave (CDW) materials have attracted extensive interest due to potential applications as high performance functional nanomaterials. As other 2D materials, 2D CDW materials are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into layers of single unit cell thickness. Although bulk CDW materials ha...
متن کاملLiquid-phase Exfoliation of Graphite to Produce High-quality Graphene
Graphene has attracted intense interest due to its exceptional physical and chemical properties as well as its wide potential applications. For applications of two-dimensional graphene, commercially viable sources are necessary. Liquid-phase exfoliation graphite is one of the most promising economical mothed for the mass production of graphene. A number of methods have been developed to achieve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Small
دوره 12 3 شماره
صفحات -
تاریخ انتشار 2016